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A new spectral nonoscil latory interpolation scheme is proposed that 
achieves spectral accuracy in smooth regions and is nonoscil latory on 
piecewise discontinuous data. The essential idea behind the scheme is 
to increase the order of an ENO scheme in proportion to the number of 
points, wherever possible. Numerical experiments with the new scheme 
on interpolation, 1 D advection, inviscid Burgers" equation, and 1 D gas 
dynamics confirm the high resolution features of the scheme. Com- 
parisons with the results of earlier spectral nonoscil latory schemes 
show that the new scheme is competit ive both in efficiency and 
accuracy. © 1994 Academic Press, Inc. 

INTRODUCTION 

Spectral nonoscillatory schemes have recently been intro- 
duced in the literature as schemes which are nonoscillatory 
on discontinuous data and at the same time achieve spectral 
accuracy in smooth regions of the flow. Some of the early 
ideas can be found in Gottlieb, Lustman, and Orszag [ 1 ], 
where a postprocessing technique is introduced that consists 
of subtracting simple discontinuous functions from the 
computed solution and smoothing the difference. A 
nonoscillatory spectral scheme was first introduced in Cai, 
Gottlieb, and Shu [2],  where spectral convergence was 
demonstrated for the 1D inviscid Burgers' equation. In a 
recent paper, Cai and Shu [3] generalize and improve 
these schemes further and present results for the full Euler 
equations in one and two dimensions. 

The essential idea in these methods is to locate regions of 
the domain containing discontinuities and use a simple 
representation of the discontinuity in these regions. This 
solution is subtracted from the numerical solution and a 
weak conventional filter is applied to the difference. In early 
work, the size and location of the single discontinuity was 
estimated from the spectrum of the numerical solution and 
a simple sawtooth function was used to represent the 
discontinuity. This turns out to be impractical for several 
discontinuities, since two functions with discontinuities at 
different locations may have the same asymptotic spectrum 
for large wave numbers. In more recent work, local methods 

are used to locate an interval containing the discontinuity, 
and an essentially nonoscillatory (ENO) finite difference 
solution is used to represent the function in this interval. 
The ENO solution serves as an added basis function 
through which the Gibbs phenomenon is avoided. Thus, 
this scheme blends spectral methods  with nonoscillatory 
finite difference methods, boosting the latter to spectral 
accuracy in smooth regions. 

In this paper, we first assess the performance of the spec- 
tral nonoscillatory scheme of Cai and Shu [3]  on the 
approximation of a periodic function with smooth structure 
and several discontinuities. Then, we present another 
approach towards obtaining spectral accuracy in smooth 
regions from an ENO interpolant. The basic idea in this new 
approach is to increase the order of the ENO scheme in 
proportion to the number of points, wherever possible. This 
method has the advantage that it does not use explicit dis- 
continuity detection nor conventional filtering. We compare 
the performance of this new nonoscillatory spectral inter- 
polation scheme with the scheme of Cai and Shu [3].  We 
observe spectral accuracy in the smooth regions with both 
schemes. 

The rest of the paper is devoted to application of the new 
spectral interpolation scheme to 1D advection, inviscid 
Burgers' equation, and 1D gas dynamics. For  advection, 
two different approaches are presented. In the first, a third- 
order Runge-Kutta  scheme is used for time integration and 
spectral accuracy demonstrated by choosing a very small 
time step. In the second approach, a Cauchy-Kowalewski 
procedure is used to obtain a scheme that is spectrally 
accurate in space and time. The extension to 1D gas 
dynamics is discussed next where the test problem is the 
interaction of a moving shock wave with a density distur- 
bance. Finally, we present our conclusions and comments. 

SPECTRAL ENO APPROXIMATION 

Let u(x )  be a piecewise C ~ function on [0, 2n] with 
several discontinuities, and let x~ = 2~(i + N ) / ( 2 N  + 1 ), i = 
- N ,  N, be the grid points. The problem consists of con- 
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structing an approximation v(x) to u(x) from the 2 N +  1 
values ui = U(Xe). The accuracy of the approximation can be 
measured in several ways. One of the simplest is to compute 
the error 

el+ 1/2 = ]U(Xi+ 1 / 2 )  - -  l)(Xi+ 1/2)1 (1) 

and study its dependence on zlx=2rc/(2N+ 1). If ei+1/2 
decays faster than any power of zlx, then the approximation 
is said to be spectrally accurate. At points of discontinuity of 
u(x) these point errors are not well defined and then it is 
customary to delete such points from consideration. 

We briefly describe the spectral nonoscillatory 
approximation scheme of Cai and Shu [3]  (hereafter 
referred to as the USE scheme) below. The first step here is 
to locate intervals which contain discontinuities. On very 
coarse meshes this can be quite difficult, but on fine meshes 
the divided differences can usually be used to detect a dis- 
continuity. For example, in [3]  the following procedure is 
used. Let 

tj=max(luj--Uj_ll, ]Uj+l--Ujl). (2) 

The residuals wj are zero within intervals containing discon- 
tinuities and nonzero outside of these intervals. The key idea 
is that the underlying function w(x) is smooth enough so 
that a spectral method can be applied to it. The discrete 
Fourier coefficients of w(x) are calculated as 

| N 

rbk-- (2N+ I ) j E  N =  wje ~xjk. (4) 

A conventional weak filter is applied to w k and the result is 
added to the basis function ~b(x) to obtain the uniform non- 
oscillatory approximation as 

N 

v(x)=O(x)+ ~ ak~ke ikx. (5) 
k=--N 

Note that v(x) is not an interpolant since v(xj)¢ wj, in 
general. The filter function is somewhat arbitrary. In most 
computations, an exponential filter is chosen so that 

a k = e - ~k/N)2', (6) 

If t j>max(3 t j  2, 3tj+2, ct) then it is concluded that the 
interval [Xj_l ,Xj+l ]  contains a discontinuity. The 
parameter ct has to be adjusted depending on the number of 
points used in resolving the discontinuity. After one pass at 
discontinuity detection, it is usually necessary to postpro- 
cess these intervals so that each interval contains a mini- 
mum number of points (6-8) and intervals are separated by 
a minimum number of points (6-8). 

Once all such intervals have been identified, an m th-order 
ENO interpolation scheme is used in these intervals. These 
disjoint intervals are pieced together in a smooth way as 
follows. Let [x~,x~] and [xZ, x 2] be two such inter- 

2 The ENO interpolation vals with x ~ < x ~ < x  2 < x  r. 
immediately provides m + 1 values (m derivatives and a 
function value) at x=x~ and at x=x~. The unique 
(2m + 1)-degree polynomial that takes on these values at 
x = x~ and x = x~ is used to connect these two intervals. 
Within the framework of ENO this is not such a difficult 
task. Specifically, the connecting polynomial is the polyno- 
mial that interpolates m + 1 points belonging to the stencil 
ofx~ and the m + 1 points belonging to the stencil ofx~. The 
first and last intervals containing discontinuities are also 
pieced together so as to satisfy periodicity. The composite 
function ~b(x), containing m th-order ENO interpolation in 
regions containing a discontinuity and smooth connecting 
polynomials in between, plays the role of an added basis 
function. 

This composite function ~b(x) is then subtracted from u(x) 
at the grid points to give 

wj  = u ( x j )  - (~(xj).  (3) 

where ~ is a constant chosen so that a N is machine zero and 
2l is called the order of the exponential filter. Usually the 
order of the filtering is between 10 and 16 in most computa- 
tions. 

Both filtering and discontinuity detection are essential for 
achieving spectral accuracy in this scheme. For a discon- 
tinuous function, the approximation without any filtering 
yields only polynomial accuracy. For  a smooth function, if 
a discontinuity is detected by error, the approximation 
without filtering is globally only as accurate as the ENO 
solution. In the next section, another approach to attaining 
spectral accuracy in smooth regions is proposed that uses 
neither conventional filtering nor explicit discontinuity 
detection. 

A NEW SPECTRAL ENO INTERPOLATION SCHEME 

Spectral accuracy is achieved here by a completely dif- 
ferent approach. Consider first the interpolation of a 
smooth periodic function by an ENO scheme of locally 
varying order m(N), where re(N) is an increasing function. 
For such a scheme, the order of accuracy of the scheme 
increases with the number of points, giving rise to global 
spectral accuracy. Obviously m(N)<~ 2N. Moreover, there 
does not seem to be any inconsistency within the ENO 
framework that would preclude a locally varying order 
m(N). 

However, difficulties arise when such a scheme is applied 
to the interpolation of a discontinuous function. The 
assumption that discontinuities are separated by r +  1 
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points of smoothness, where r is the order of the ENO 
scheme, breaks down. To illustrate these difficulties in a 
concrete manner, consider a function with two discon- 
tinuities, one [aetween [Xk, Xk+l] and another between 
[Xk+ p, Xk+ p+ 1], and we attempt to interpolate using a 
locally variable order ENO scheme with m(N)  ~> p. For any 
interval [xj, xj+ 1] with k + p > j > k, due to stencil selec- 
tion away from discontinuities, the leftmost point of the 
stencil i(j) eventually becomes i ( j ) = k + l  and the 
rightmost point of the stencil becomes k + p .  This 
corresponds to m = p - 1 .  At the next step (m = p), the 
ENO scheme has to decide between i ( j)  = k or i(j)  = k + 1, 
both of which involve stencils that interpolate across a dis- 
continuity. If the stencil is allowed to grow unchecked, the 
scheme will pick one of these stencils, which will result in an 
oscillatory interpolant. 

This difficulty can be overcome by a simple modification 
of the stencil selection procedure of the ENO scheme. At 
each step of the stencil selection process, we monitor the size 
of the two divided differences that are being compared. If 
both are large compared to some threshold (1/,4x, for exam- 
ple) then the stencil selection process is terminated at that 
step. This modification has the effect of limiting the order of 
the interpolation to the maximum possible value without 
interpolating across a discontinuity. In the example con- 
stdered above, this restricts the order of accuracy to m(N)  = 
p - 1  between the two discontinuities. Upon grid refine- 
ment, spectral accuracy can be still be attained between the 
discontinuities since p increases with N. 

The modified stencil selection algorithm is summarized in 
Appendix 1. Note that the central stencil or stencils have 
been weighted as suggested by Shu [4].  There are probably 
other ways to limit the order of accuracy locally so as not to 
difference across discontinuities. One disadvantage of the 
above modification is that while interpolating an interval 
containing a discontinuity (such as [Xk, Xk+ 1"] in the above 
example) the order of the interpolation is frequently 
reduced to one. In all of the tests presented below this 
abrupt reduction in order did not create any problems such 
as oscillations or instabilities, although it does seem restric- 
tive. 

The choice of m(N)  and the threshold 1/,4x are somewhat 
arbitrary. The choice of the threshold plays the role of dis- 
continuity detection in this scheme. A large threshold allows 
for better resolution in the smooth parts of the flow while 
risking an oscillatory interpolant near discontinuities. A 
small threshold allows for crisp resolution near discon- 
tinuities while risking a loss of accuracy in the smooth 
regions of the flow. The loss of accuracy in smooth regions 
is due to the fact that smooth oscillatory data may be "seen" 
as discontinuous by a small threshold. Some bounds on the 
size of the threshold may be based on the fact that for a 
smooth function the k th-divided difference is O(1 )/k! while 
for a jump discontinuity in the p th  derivative (0 ~< p ~< k), 

the k th-divded difference is of order (,4 x) p - k [ w(p) ], where 
[w (p)] denotes the jump in the p th  derivative. Hence, any 
quantity between 1/k! and Ax p-k  can qualify as a 
threshold. Also, we may expect the threshold used for detec- 
tion of ideal discontinuities, such as in interpolation, to be 
smaller than that used for detection of discontinuities that 
arise in gas dynamics. We have experimented with a few 
thresholds such as 1/,4x, 1/(,4X) 2, 2k/(,4X) 2, k!/(,4x) 2, 
1/(,4x) k, etc. and found that 1/,4x gave the best performance 
for interpolation and k!/( ,4x) 2 performed best for flow 
problems. More experimentation on a wide range of 
problems is necessary to determine the optimum threshold. 

For  spectral accuracy, m(N)  is required to be an 
increasing function of N. However, it is well known that the 
interpolant of a smooth function with m(N)  = 2N generally 
diverges for large N (Runge phenomenon). Thus re(N) can- 
not be too close to 2N. Moreover, large values of m(N) lead 
to large roundoff errors in the calculation of the divided dif- 
ferences which ultimately swamp any gains in accuracy from 
high orders. We have experimented with various functions 
and found that re(N) = ( N -  1)/2 yields reasonable results 
for the interpolation problem. When ENOV is used, along 
with a low order time integration scheme (as in ENOVRK 
below) we often encounter time step limitations that are 
prohibitively expensive. To alleviate this problem somewhat 
we have used m ( N ) = M i n ( ( N - 1 ) / 2 ,  Mmax) , where mma x 
varies between 10 and 15. 

LINEAR ADVECTION 

The ENOV interpolation scheme involves stencils that 
are very large and it is interesting to determine whether such 
large stencils lead to instability. To this end, we use the 
ENOV interpolation scheme to solve the linear advection 
problem given by 

u t + u x = 0 

u(0, t) = u(2g, t), 

u(x, O) = f ( x ) .  

x~  [0, 2~z] (7) 

We prefer to work with the cell-averaged version of the dif- 
ference equations. Let fi;(t) be the cell average of u(x) 
defined by 

1 fxi+dx/2 
~ i ( t )  = 3 x  x,-~x/2 u(¢, t) d~. (8 )  

Integrating the pde over the cell results in the well-known 
semidiscrete form, 

dui 1 
--~ +-~x  (u(xi+ 1/2, t) - u (x i_  ,/2, t) ) = o, (9) 
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increasingly ill-posed for large m and is subject to large 
roundoff errors as it is equivalent to inversion of the m x m 
Vandermonde matrix. 

EULER EQUATIONS 

The extension of the E N O V R K  scheme to the 1D Euler 
equations is quite straightforward and amounts to little 
more than incorporating a variable order m(N) and the 
modified stencil selection procedure described earlier into a 
standard E N O  scheme. The reader is referred to Refs. [3, 6] 
for details. Here we will briefly point out some differences 
from convection. 

As is standard practice, we use local characteristic 
variables [3 ] to interpolate. The constant c in the primitive 
function H(x)  is zero here, since u(x) is not periodic. For gas 
dynamics, both the values of v(x) at x =xT+ 1/2 and x = 
x++ 1/2 are required. These values are the left and right states 
for a Riemann problem whose solution at x = xi+ 1/2 gives 
the numerical flux. The exact Riemann solver by Gottlieb 
[8]  was used in this study. 

NUMERICAL TESTS 

.We describe below various numerical tests on both the 
USE scheme and the ENOV scheme. 

1. Interpolation of  a Smooth Function 

We consider interpolating the smooth function u(x )=  
sin4(x) on x ~ [0, 2n] with the USE and ENOV schemes. 
For the former, no discontinuities are detected and a 10th- 
order filter is used. For the latter, we use a threshold of 
1/Ax, m = (N--1) /2 ,  and enforce periodic conditions at 
x = 0 ,  2n. For  purposes of comparison we also present 

TABLE I 

Interpolation of sin4(x) by Various Schemes 

N Max. error Order 

USE scheme 

2 0.250 - -  
3 0.250 0 
4 1.38( - 17) 139.77 

ENOV scheme 

4 0.189 - -  
8 1.838(-2) 3.66 

16 1.711(-5) 10.52 
32 6.928(-13) 25.11 

ENO3 scheme 

4 0.107 - -  
8 0 .838(-2)  2.76 

16 1.957(-3) 3.37 
32 1.347(-4) 3.95 
64 8.766(-6)  3.99 

results with a fixed third-order ENO scheme (ENO3), 
which corresponds to piecewise cubic interpolation. The 
point errors are defined as in Eq. (1) and the global maxi- 
mum error is shown as a function of N in Table I. As 
expected, for the USE scheme the maximum error is essen- 
tially machine zero once the modes in the initial condition 
are resolved. The E N O V  scheme clearly shows spectral 
accuracy beyond N = 8  and the order exponent of the 
ENO3 scheme asymptotes to 4 as expected. For  this case, 
the USE scheme is much superior, since the USE scheme 
achieves machine zero with N = 4 while the ENOV scheme 
requires N - - 3 6  to reduce the maximum error to machine 
zero. 
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FIG. 1. (a) USE interpolation with N =  32. (b) Log of point errors with N =  32, 64, 128, m = 3, 21 = 10. 
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FIG. 2. (a) ENO3 interpolation with N= 32. (b) Log of point errors with N= 32, 64, 128, m = 3. 

2. Interpolation o f  a D&continuous Function 

The chosen function is essentially the same as the one in 
Har ten  [9 ]  mapped  into [0, 2re]. Let z =  x / n - 3 / 2 .  Then 
the function is given by 

u( z ) = - z sin(3nz2/2), 

= Isin(2nz)l, 

= 2z - 1 - sin(37zz)/6, 

- - l < z <  --½ 
1 -~<z<½ 

½ < z < l .  (23) 

For  z < - 1, u(z) = u(z + 2). The function has three function 
discontinuities and several derivative discontinuities. 
Figure 1 shows the results of  interpolation using the USE 
scheme. A sharp nonosci l latory interpolation is obtained as 
shown in Fig. la. In a plot of  the logari thm of the point  
errors, spectral accuracy can be ascertained by the unequal  
spacing between curves as the number  of points is doubled.  

Compar ing  the plot  of  the log error (Fig. lb )  obtained, with 
the USE scheme, with that obtained from E N O 3  (Fig. 2b), 
we seem to observe evidence of spectral accuracy in the 
smooth  regions between the discontinuities. For  the E N O V  
scheme a threshold of  1/Ax and m ( N )  = ( N -  1 )/2 was used. 
The results f rom the E N O V  scheme are shown in Fig. 3 and 
seem to be superior to the USE scheme. To reach close to 
machine zero in the smooth  regions the USE scheme 
required N = 128, whereas the E N O V  scheme required only 
N = 3 2 .  

As a further test, an E N O  scheme of  order m ( N )  but 
without any modifications to the stencil selection procedure 
was also tested. The results are shown in Figs. 4a, b. The loss 
of spectral accuracy in certain regions between discon- 
tinuities is clearly visible in Fig. 4b. 

To compare  efficiencies, a real F F T  routine (from the 
I M S L  math  library) was used to compute  the Fourier  coef- 
ficients and the function values (instead of  Eqs. (4, 5)) for 
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the USE scheme. For  the ENOV scheme a threshold of 1/Ax 
and m(N) = (N--  1 )/2 (with no upper limit) was used. All 
computations were carried out in single precision on the 
Cray-YMP without any special effort at vectorization. In 
particular, the field loop over all cells (i.e., the loop over j  in 
Appendix 1) did not vectorize in these computations. 
Table II shows the CPU times for the various schemes. The 
ENOV scheme is between 2.5 to 2 times faster than the USE 
scheme for the grids tested. However, the gap narrows for 
larger N. With the third-order ENO scheme, the error in the 
smooth region on the finest grid ( N =  162) is on the order of 
10 -s  and takes roughly 0.056 s. In comparison, with the 
ENOV scheme, with N = 37, the error in the smooth regions 
is on the order of 10 ~5 and takes only 0.017 s. Thus, for this 
very simple problem, the higher order accuracy is well 
worth the extra effort. 

3. Advection of a D&continuous Function 

The ENOVRK and ENOVCK were used to solve the 
problem of linear advection over a period of the function 
given in Eq. (23). To demonstrate spectral accuracy with 
ENOVRK the time step needs to be chosen small enough so 
that time differencing errors are negligible when compared 
to the spatial differencing errors. Thus, the time step in these 

TABLE II 

Comparison of the Efficiencies of Various Schemes 

N USE ENOV ENO3 

37 0.048 0.017 0.015 
62 0.083 0.030 0.023 

112 0.152 0.061 0.040 
162 0.222 0.112 0.056 

Note. CPUtimes  are in Cray-YMP seconds. 

simulations was reduced sequentially in such a way that 
further reduction of the time step did not significantly 
reduce the error in the smooth regions. This results in a 
small time step equal to At = 2~/1800. Once this time step 
was determined, the discontinuous initial function given by 
Eq. (23) was advected for one period for N =  8, 16, 32, and 
64 with the same time step. As mentioned earlier, a larger 
threshold of k!/Ax 2 and m(N)= ( N - 1 ) / 2  was used. The 
results are shown in Figs. 5a, b. We seem to observe spectral 
accuracy in the smooth regions, although this is not as clear 
as for interpolation. 

It is worth mentioning that such small time steps are not 
due to stability constraints. Numerical experiments indicate 
that the ENOVRK scheme is stable for dt /dx  <~ 0.5 with 
Mmax = 15. However, at such large time steps the errors due 
to time differencing completely overshadow the spatial 
differencing errors so that spectral accuracy cannot be 
observed. 

The results from ENOVCK are shown in Figs. 6a, b. 
Grids with N = 8, 16, and 32 were used in the study with the 
same threshold and re(N) as above. Spectral convergence is 
discernable in the smooth regions of the function. However, 
grid refinement beyond N = 32 gave rise to generally poorer 
results. We speculate that this is due to roundoff errors 
caused by the evaluation of factorials and Stifling numbers 
with magnitudes on the order of machine infinity. It may be 
possible to combine Eqs. (13), (18), and (19) into a form 
that is less susceptible to roundoff errors. This will be 
investigated in future work. A recent related paper by 
Tal-Ezer [10] addresses precisely the nonconvergence of 
high order polynomial interpolation in Newton form. 

The increased resolution of high order schemes is further 
illustrated in Fig. 7, where a solution with ENOVRK on 
a coarse grid (Fig. 7a) is compared with a solution with 
third-order ENO (Fig. 7b) under identical conditions. The 

581/114/2-14 
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increased resolution is clearly visible, especially between 
discontinuities. 

4. Inviscid Burgers' Equation 

We solve the initial value problem given by 

u, + ~ = 0 (24) 

in the interval x e [-0, 6] with initial conditions given by 

7~x 
u(x, 0) = 0.3 + 0.7 sin -~- (25) 

and periodic boundary conditions using an obvious exten- 
sion of ENOVRK.  The cell faces here are given by x~ = 

6 ( i -  1)IN, i =  1, N +  1. An iterative exact solution to this 
problem is readily obtained, as is the exact Riemann solver. 
We solve this problem with m = M i n ( ( N - 1 ) / 2 ,  15) and a 
threshold of k !/zlx 2. Again, the time step is chosen small 
enough so that the time differencing errors become sub- 
dominant.  A sharp nonoscillatory solution is obtained with 
as few as eight points (Fig. 8a). The plot of the log errors (to 
the base 10) is shown in Fig. 8b for N = 8, 16, 32. Again, we 
seem to observe spectral accuracy in the smooth regions. 

These results can be compared with the results of Cai and 
Shu [-3] (who solve it on the domain [0 ,2 ~ ] )  and 
Sidilkover and Karniadakis [ 11 ], who use a nonoscillatory 
spectral element method. With the scheme of Cai and Shu, 
an error level of 10-lo is achieved with approximately 250 
points (Fig. 4a of Ref. [-3]), while Sidilkover and Kar-  
niadakis achieve this error level with approximately 160 
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points (Fig. 9 of Ref. [ 11 ] ). In contrast, the same error level 
is achieved by the ENOV scheme with 32 points (Fig. 8b). 

5. Interaction of a Moving Shock with a Density Disturbance 

This is the same problem as in Cai, Gottlieb, and Harten 
[-12] which was first introduced in Shu and Osher [13] 
with slightly different parameters. This test problem con- 
tains both smooth structure and discontinuities and is thus 
a good test problem for higher order methods. The domain 
of the problem is - 1  ~< x ~< 1, and a uniform grid of 200 
points was used in all cases. Due to severe time step restric- 
tions, we chose m(N)= M i n ( ( N - 1 ) / 2 ,  10) for these com- 
putations. The initial conditions are 

(PL, uc, PL) = (3.857143, 2.629369, 10.3333) 

for x <  -0 .8  

(PR, uR, PR)= (1 + e  sin(5r~x), 0, 1) 

for x >  -0 .8 ,  

(26) 

where p, u, p are the density, velocity, and pressure, respec- 
tively. The ratio of specific heats 7 = 1.4 and e = 0.2. When 

= 0, this is a pure Mach 3 shock moving to the right. As 
there is no known exact solution to this problem, a solution 
with a third-order ENO scheme with 800 points is used 
instead. 

The results, presented in Figs. 9a, b, show the density field 
at t = 0.36. The solid line is the ENO3 solution with 800 
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points. With the threshold of 1 /Ax  (Fig. 9b), it can be seen 
that the postshock density oscillations are clearly under- 
resolved while with the threshold of k ! / A x  2 (Fig. 9a), we 
obtain full resolution of these oscillations. In Ref. [ 12 ] a cell 
averaging Chebyshev spectral method (CAC) obtains full 
resolution of the solution with 220 points. For this problem, 
it thus appears that the results of the ENOV scheme (with 
the second threshold) are comparable in resolution to 
results obtained using the CAC spectral method. 

CONCLUSIONS 

Numerical experiments confirm that both the USE 
scheme and the ENOV scheme give interpolations that are 
nonoscillatory and achieve spectral accuracy in smooth 
regions. The new scheme proposed herein (ENOV) 
provides an easy and efficient way to achieve spectral 
accuracy in smooth regions without explicit discontinuity 
detection and conventional smoothing. When applied to 
convection and 1D gas dynamics, the new scheme gives 
results comparable in accuracy and efficiency to earlier 
results using spectral schemes. 

Both schemes involve arbitrary parameters related to dis- 
continuity detection, which remains a problem. Further 
analysis and testing is required in this area before spectral 
nonoscillatory schemes achieve the reliability of traditional 
nonoscillatory upwind schemes. 

APPENDIX 1 

Let d(k, i) be the kth-order divided difference with 
leftmost point xi, i.e., 

d(k ,  i) = U[ X i . . . . .  Xi + k] 

and let/s(k) for k = 1 ..... m denote the leftmost point of the 
stencil at each stage of the stencil selection process and let 
i c ( j )  denote the leftmost point in the linearly stable centered 
stencil. The conventional stencil selection algorithm to find 
i s (m)  is 

is(1) = j 
do l O O k = l , m - 1  

i f ( i s (k )  > ic ( j ) )  then 
if(2 Id(k+ 1, is(k))[ > [d(k+ 1, i s ( k ) -  1)[) then 
i s ( k +  1 ) = i s ( k ) -  1 
else 
is(k + 1 ) = i s (k )  
endif 

else 

endif 

if(ld(k + 1, is(k)l  > 2  Id(k+ 1, i s ( k ) -  1)l) then 
is( k + 1 ) = i s (k)  - 1 
else 
is( k + 1 ) = i s (k)  
endif 

100 continue 

We propose modifying this algorithm to include a locally 
varying order m = m ( N )  and a check on the absolute 
magnitude of the divided differences. The modified algo- 
rithm may be written as 

m = m ( N )  
is(1) = j 

do 100 k =  1, m -  1 
drain = min(ld(k + 1, i s ( k ) -  1)[, [d(k+ 1, i s (k ) ) l )  

i f ( d m i  n / >  1 /Ax)  then 
m = k  
go to 101 
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else 
if(is(k) > ic(j)) then 

if(2 Id(k+ 1, is(k)l > Id(k+ 1, i s (k)-  11) then 
is(k+ 1)=is (k ) -  1 
else 
is(k+ 1)=  is(k) 
endif 

else 
if(Id(k + 1, is(k)l > 2  Id(k+ 1, is(k)-  1)l) then 
is(  k + 1) = is(  ~: ) - 1 
else 
is(k+ 1)= is(k) 
endif 

endif 
endif 

100 continue 
101 continue 
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